Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0372919950160040415
Journal of Biomedical Engineering Research
1995 Volume.16 No. 4 p.415 ~ p.424
DEVS/CS ( Discrete Event Specification System/continuous System) Combined Modeling of Cardiovascular Continuous System Model

Abstract
Combined models, specified by two or more modeling formalisms, can represent a wide variety of complex systems. This paper describes a methodology for the development of combined models in two model types of discrete event and continuous process. The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can combine model of the DES and the CS within a framework. The structure employs the DEVS formalism for the DES models and differential or polynomial equations for the CS models. To employ the proposed structure to specify a DEVS/CS combined model, a modeler needs to take the following steps. First, a modeler should identify events in the CS and transform the states of the CS into the DES. Second, a modular employs the formalism to specify the system as the DES. Finally, a moduler developes sub-models for the CS and continguos states of the DES and establishs one-to-one correspondence between the sub-models and such states. The proposed formal structre has been applied to develop a DEVS/CS combined model for the human cardiovascular system. For this, the cardiac cycle is partitioned into a set of phases based on events identified through observation. For each phase, a CS model has been developed and associated with the phase. To validate the DEVS/CS combined model developed, then simulate the model in the DEVSIM + + environment, which is a model simulation results with the results obtained from the CS model simulation using SPICE. The comparison shows that the DEVS/CS combined model adequately represents dynamics of the human heart system at each phase of cardiac cycle.
KEYWORD
FullTexts / Linksout information
Listed journal information